Hydrodynamic Performance of a Manta Ray Inspired Oscillating Fin
نویسنده
چکیده
Myliobatidae is a family of large pelagic rays including the manta ray, Manta birostris. They are extremely efficient swimmers, can cruise at high speeds and can perform turn-on-a-dime maneuvering, making these fishes excellent inspiration for an autonomous underwater vehicle. Manta rays have been studied from a biological perspective; however the hydrodynamic performance of their large-amplitude oscillatory-style pectoral fin flapping is unknown. An experimental robotic flapping fin has been developed. Three different kinematic modes that range from simple and artificial to complex and biologicallybased are tested to determine the performance benefits of different kinematic features exhibited by the manta ray. The thrust and efficiency performance are quantified. Span-wise curvature is found to improve efficiency by a factor of two. A flat mode of swimming is found to have higher efficiency for higher swimming speeds. Finally, tip lag is found to neither improve nor degrade efficiency performance. Implications for a bio-inspired artificial pectoral fin are discussed.
منابع مشابه
Hydrodynamic Performance of Aquatic Flapping: Efficiency of Underwater Flight in the Manta
The manta is the largest marine organism to swim by dorsoventral oscillation (flapping) of the pectoral fins. The manta has been considered to swim with a high efficiency stroke, but this assertion has not been previously examined. The oscillatory swimming strokes of the manta were examined by detailing the kinematics of the pectoral fin movements swimming over a range of speeds and by analyzin...
متن کاملAnalytical predictions, optimization, and design of a tensegrity-based artificial pectoral fin
For millions of years, aquatic species have utilized the principles of unsteady hydrodynamics to perform efficient, highly maneuverable and silent swimming motions. The manta ray, Manta birostris, has been identified as one such high performance species due to their ability to migrate long distances with low energy consumption, maneuver in spaces the size of their tip-to-tip wing span, produce ...
متن کاملInvestigating the Thrust Production of a Myliobatoid-Inspired Oscillating Wing
Myliobatidae is a family of large pelagic rays including cownose, eagle and manta rays. They are extremely efficient swimmers, can cruise at high speeds and can perform turn-on-a-dime maneuvering, making these fishes excellent inspiration for an autonomous underwater vehicle. Myliobatoids have been studied extensively from a biological perspective; however the fluid mechanisms that produce thru...
متن کاملNumerical Analysis of Hydrodynamics for Bionic Oscillating Hydrofoil Based on Panel Method
The kinematics model based on the Slender-Body theory is proposed from the bionic movement of real fish. The Panel method is applied to the hydrodynamic performance analysis innovatively, with the Gauss-Seidel method to solve the Navier-Stokes equations additionally, to evaluate the flexible deformation of fish in swimming accurately when satisfying the boundary conditions. A physical prototype...
متن کاملA review on robotic fish enabled by ionic polymer–metal composite artificial muscles
A novel actuating material, which is lightweight, soft, and capable of generating large flapping motion under electrical stimuli, is highly desirable to build energy-efficient and maneuverable bio-inspired underwater robots. Ionic polymer-metal composites are important category of electroactive polymers, since they can generate large bending motions under low actuation voltages. IPMCs are ideal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010